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Problem of Interest

F* :=mingepn [F(x) := f(Az) + h(x)] (P)

> A:R"™ — R™ is a linear operator (not necessarily invertible)

\%

f:R™ — RU {400} is a -log-homogeneous self-concordant barrier
(9-LHSCB) for some regular cone K C R™

v

h:R™ - RU{+o0} is a closed and convex function, with compact
domain X :=domh

> Assume dom F' # (), so at least one minimizer z* € dom F' exists, and
define F* := F(a*)

> Includes many applications (coming up later).

Renbo Zhao (Ulowa)



0-LHSCB (logarithmically-homogeneous self-concordant barrier)

Renbo Zhao (Ulowa)



0-LHSCB (logarithmically-homogeneous self-concordant barrier)

> Let K ; R™ be a regular cone, i.e., K is closed, convex, pointed and has
nonempty interior.

Renbo Zhao (Ulowa)



0-LHSCB (logarithmically-homogeneous self-concordant barrier)

> Let K g R™ be a regular cone, i.e., K is closed, convex, pointed and has
nonempty interior.

> fis a 6-LHSCB on K with complezity parameter @ > 1 if f is three-times
differentiable and strictly convex on int I, and satisfies

Renbo Zhao (Ulowa)



0-LHSCB (logarithmically-homogeneous self-concordant barrier)
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0-LHSCB (logarithmically-homogeneous self-concordant barrier)

> Let K ; R™ be a regular cone, i.e., K is closed, convex, pointed and has
nonempty interior.

> fis a 6-LHSCB on K with complezity parameter @ > 1 if f is three-times
differentiable and strictly convex on int I, and satisfies

0 |D?f(u)[w,w,w]| <2[w|} Vueintk, VweR™,
® f(ur) — oo for any {ur}r>1 C int K such that ur — u € bd £,
® f(tu) = f(u) —0In(t) Yueintk, vVt > 0.
where ||w]|,, := (V2 f(u)w,w)/? denotes the local norm of w at u € int K.
> Two prototypical examples:
® f(U)=—Indet(U) for U € K :=S% and =k,
* flu)=->" wjln(u;) for u € K:=R7T and 0 = D" . w; where

j=1 j=1
Wi, ..., Wn > 1.

Renbo Zhao (Ulowa)



® Applications

Renbo Zhao (Ulo



A Motivating Example: D-optimal Design

min, —Indet(}1", pia;a;)
st > pi=1,p; >0, Vie [m]. (D-0PT)

Renbo Zhao (Ulowa)



A Motivating Example: D-optimal Design

min, —Indet(31" piaa;)
st > pi=1,p; >0, Vie [m]. (D-0PT)

> Problem data: {a;}{~; C R™ whose linear span is R".

Renbo Zhao (Ulowa)



A Motivating Example: D-optimal Design

min, —Indet(31" piaa;)
st > pi=1,p; >0, Vie [m]. (D-0PT)

> Problem data: {a;}{~; C R™ whose linear span is R".

> Arises in many places, including optimal experimental design, and as the dual
problem of the minimum volume enclosing ellipsoid problem.

Renbo Zhao (Ulowa)



A Motivating Example: D-optimal Design

min, —Indet(31" piaa;)
st > pi=1,p; >0, Vie [m]. (D-0PT)

> Problem data: {a;}{~; C R™ whose linear span is R".

> Arises in many places, including optimal experimental design, and as the dual
problem of the minimum volume enclosing ellipsoid problem.

> Khachiyan (1996) proposed a “barycentric coordinate ascent” method with
exact line-search, which is actually FW with exact line-search. Method works
remarkably well both in theory and practice: it computes an e-optimal solution
of (D-0PT) in (essentially) O(n?/¢) iterations.
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A Motivating Example: D-optimal Design

min, —Indet(> /", pia;a;)
st Yt pi=1,p; >0, Vie[m]. (D-0PT)

> The success of this method has been a mysterious outlier for more than 20
years, since the objective function in (D-OPT) does not have Lipschitz gradient
on the feasible region, which is a critical assumption for traditional Frank-Wolfe.

> What problem structure actually drives the success of Khachiyan’s method?
And might such structure exist anywhere else?

> We resolve this mystery and generalize his method to the much broader class of
problems in (P), even while relaxing the exact line-search requirement.
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Poisson Image Deblurring with TV Regularization
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Poisson Image Deblurring with TV Regularization

True image X Noisy image Y

> Let an m x n matrix X denote the true representation of an image, such
that 0 < X;; < M denotes the pixel level at location (¢, 7).

> Let A : R™*™ — R™*" denote the 2D discrete convolutional (linear)
operator, which is assumed to be known.

> The observed image Y is obtained by first passing X through A, and then
subject to additive independent (entry-wise) Poisson noise.

> For convenience, we also represent A in its matrix form A € RV*V | where
N := mn, and vectorize Y and X into y € RY and 2 € RY, respectively.
Notation: we write z = vec(X) and X = mat(x), etc.
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Poisson Image Deblurring with TV Regularization

> We seek to recover X from Y (equivalently z from y) using
maximum-likelihood estimation on the TV-regularized problem:

mingepy F(z) := — Zl]il yiIn(a) x) + (Zl]\il a;) " + ATV(x)
s.t. 0<z < Me (Deblur)
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Poisson Image Deblurring with TV Regularization

> We seek to recover X from Y (equivalently z from y) using
maximum-likelihood estimation on the TV-regularized problem:

mingepy F(z) := — Zl]\il yiIn(a) x) + (Zl]\il a;)) "z + ATV(z)
s.t. 0<z < Me (Deblur)

> (Deblur) has a (standard) total-variation (T'V) regularization term to
recover a smooth image with sharp edges. The TV term is given by

TV(2) =300 S0 [[mat(a)]i; — [mat(z)]; 4]
+ 3 ([mat()]i g — [mat(@)]is] -
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Some Other Applications

> Analyzing social networks (learning of Multivariate Hawkes processes)
> Medical imaging reconstruction (Positron emission tomography)
> Quantum physics (quantum state tomography)

> Computational geometry (computing the analytic center of a polytope)
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® Our Method: New Generalized Frank-Wolfe Method
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A Simple Ilustration When h = 1p
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New Generalized Frank-Wolfe Method (gFW-LHSCB)

F* := mingegn [F(z) := f(Az) + h(z)] (P

» Initialize: 2° € dom F, k := 0

» Repeat (until some convergence criterion is met)

" € arg mingcpn (Vf(AZ"), Az) + h(z) (Solve Lin. subproblem)
G = (VF(Az"), A(z" — ")) + h(z") = h(v") (FW-Gap)
Dy = ||A(" — 2")|| e (Local Distance)
. G .
U { Dy (G ]il- Dy)’ 1} (Stepsize)
2" =2 oy (Uk - xk) (Update)
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New Generalized Frank-Wolfe Method (gFW-LHSCB)

F* := mingegn [F(z) := f(Az) + h(z)] (P

» Initialize: 2° € dom F, k := 0

» Repeat (until some convergence criterion is met)

o € arg mingcpn (Vf(AZ"), Az) + h(z) (Solve Lin. subproblem)
G 1= (V(AT), A" — o)) + h(z") — h(o") (FW-Gap)
Dy = ||A(" — 2")|| e (Local Distance)
o = min {m , 1} (Stepsize)
"= 2P o (0 — ) (Update)
k=k+1
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> The FW-gap G}, provides an effective stopping criterion:
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Remarks on gFW-LHSCB

> For most applications (including all of the applications mentioned
previously), Dy in (Local Distance) can be computed in O(n) time.

> The FW-gap G}, provides an effective stopping criterion:
Gr > [0 := F(2%) — F*], for all k > 0.

> The step-size rule in (Stepsize) is derived from the “curvature property”
of a (standard strongly non-degenerate) self-concordant function:

f@® + a(w® —2%)) < f(2¥) — aGy + w(aDy), (Curvature)
where w(t) :== —t —In(1 —1¢) for t < 1.

> For some applications (e.g., PET and D-optimal design), the step-size can
also be efficiently computed via exact line-search.
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> (Iteration complexity for e-optimality gap) Let K. denote the number of
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Computational Guarantees

Define Rp := maxy yedomn |h(z) —h(y)| (the variation of h on its domain)

Recall that dq is the initial optimality gap

Theorem:

> (Iteration complexity for e-optimality gap) Let K. denote the number of
iterations required by gFW-LHSCB to obtain d; < . Then:

K. < [5.3(80 + 6 + Ry) In(10.650)] + {12(9 + Ry)? max {é - 5i oH .
0

> (Iteration complexity for e-FW gap) Let FWGAP, denote the number of
iterations required by gFW-LHSCB to obtain Gy < e. Then:

24 2
FWGAP. < [5.3(do + 0 + Ry) In(10.60,)] + [@W .
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Remarks on the Computational Guarantees

Our computational guarantees only depend on three (natural) quantities:

> the initial optimality gap dg,
> the complexity parameter 6 of the barrier f,

> the variation of h on its domain domh (=0 if h = 1x).

For many applications, all of the three quantities can be easily estimated, and
hence the computational guarantees are known before running the algorithm.

Renbo Zhao (Ulowa)
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Computational Experiments on Poisson Image
Deblurring with TV Regularization

mingepy F(z) = — Zl]il yiIn(a] ) + <Zf\;1 ai, x) + ATV (z)
=f(Az) =h(z) (Deblur)
s.t. 0<z< Me,
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Computational Experiments on Poisson Image
Deblurring with TV Regularization

mingepy F(z) = — Zl]\il yiIn(a] ) + <Zl]\;1 ai, x) + ATV (z)
=f(Az) =h(z) (Deblur)
s.t. 0<z< Me,

> Since TV(:) is polyhedral, and the linear-optimization sub-problem
vP € arg min0§I§M6<Vf(Amk), Az) + (Zl]\il ap, z) + ATV(z)

can be formulated as a relatively simple LP and solved easily using a
standard LP solver such as Gurobi.
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Implementation Details/Issues

> We evaluate the numerical performance of our FW method gFW-LHSCB
(with adaptive stepsize) which we call FW-Adapt.

> It turns out that an exact line-search step-size for gFW-LHSCB can be
computed for this particular problem, which we call FW-Exact.

> We tested FW-Adapt and FW-Exact on the Shepp-Logan phantom image
of size 100 x 100 (hence N = 10,000).

> We chose the starting point 2° = vec(Y’) (the vectorized noisy image),
and we set A = 0.01.

> We used CVXPY to (approximately) compute the optimal objective value
F* of (Deblur) in order to compute optimality gaps.
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Results: Recovered Images

(k) True image X (1) Noisy image Y’ (m) Fw-Adapt (n) FW-Exact

Figure 1: True, noisy and recovered Shepp-Logan phantom images.
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Results: Optimality Gaps versus Time and Iterations

475 | W D= ———— 4325 — - o
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log10(Time(s)) log10(k)
(a) Optimality gap versus time (in seconds) (b) Optimality gap versus iterations

Figure 2: Comparison of optimality gaps of FW-Adapt (FW-A) and FW-Exact (FW-E)
for image recovery of the Shepp-Logan phantom image.
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Motivating Example: D-Optimal Design

min f(z):= —Indet (Zzlxiaia;'—)

m (D-0PT)
st z€Api={>" xi=1, 2 >0, Vie [m]}
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min f(z):= —Indet (Zzn:lm,-aia;r)

" (D-0PT)
st €Ay ={>" xi=1,2:>0,Vie [m]}.

> Problem data: m points {a;};~; that span R".

> In statistics, (D-OPT) is the continuous relaxation of the (discrete) D-optimal
experimental design problem; in computational geometry, it is the dual problem
of the minimum volume enclosing ellipsoid (MVEE) problem.
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Motivating Example: D-Optimal Design

min f(z):= —Indet (Z;n:lac,-aia;r)

" (D-0PT)
st €Ay ={>" xi=1,2:>0,Vie [m]}.

> Problem data: m points {a;};~; that span R".

> In statistics, (D-OPT) is the continuous relaxation of the (discrete) D-optimal
experimental design problem; in computational geometry, it is the dual problem
of the minimum volume enclosing ellipsoid (MVEE) problem.

> Despite its seemingly simple structure, (D-0PT) is not quite amenable to
(traditional) first-order methods (since f blows up on part of A, and has no
L-smoothness property on A,).
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Motivating Example: D-Optimal Design

min f(z):= —Indet (Zzn:lac,-aia;r)

" (D-0PT)
st €Ay ={>" xi=1,2:>0,Vie [m]}.

> Problem data: m points {a;};~; that span R".

> In statistics, (D-OPT) is the continuous relaxation of the (discrete) D-optimal
experimental design problem; in computational geometry, it is the dual problem
of the minimum volume enclosing ellipsoid (MVEE) problem.

> Despite its seemingly simple structure, (D-0PT) is not quite amenable to
(traditional) first-order methods (since f blows up on part of A, and has no
L-smoothness property on A,).

> Atwood (1973) proposed the following algorithm for solving (D-0PT):
ik € argMin, ¢,y Vif (2, Gr = -V, f(z") —n,
Jk € argmax;. k5o Vif(@"), Gr:=V; @) +n,

koo ~
e, — " if Gy > G,
df = X ) 2P = gk + akdk,
" —ej, otherwise

where the stepsize ay > 0 is given by exact line-search.
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The WA-TY Method

>> Structurally, this method coincides with the Frank-Wolfe method with Wolfe’s
away-step (1970), and it was rediscovered by Todd and Yildirim (2005) —
therefore, it is referred to as the WA-TY method.
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The WA-TY Method

>> Structurally, this method coincides with the Frank-Wolfe method with Wolfe’s
away-step (1970), and it was rediscovered by Todd and Yildirim (2005) —
therefore, it is referred to as the WA-TY method.

> Excellent numerical performance:

7 - AFW-A
= AFW-E (WA-TY)
— FW-A

1076 | mmmm FW-E

=.m MG

m.m RSGM-F

10-8 4 RSGM-LS

o 1 2 3 a4 5 6 0o 1 2 3 4 5 6
Time(s) Time(s)

ASFW-A & ASFW-E (this work): Away-step FW methods for LHB

FW-A & FW-E [Fed72; Kha96; ZFce]: Generalized FW methods for LHB
RSGM-F & RSGM-LS [BBT17; LFN18]: Relatively smooth gradient method
MG [STT78]: Multiplicative gradient method

Renbo Zhao (Ulowa)




Mystery of the WA-TY Method

Renbo Zhao (Ulowa)



Mystery of the WA-TY Method

> The excellent numerical performance of the WA-TY method has attracted some
research interests — Ahipasaoglu, Sun and Todd (2008) showed local linear
convergence of this method, but the global linear convergence remains open.
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> The excellent numerical performance of the WA-TY method has attracted some
research interests — Ahipasaoglu, Sun and Todd (2008) showed local linear
convergence of this method, but the global linear convergence remains open.

> The authors pointed out two structural difficulties of (D-0PT): i) f is not
L-smooth on A,, and ii) f is degenerate on the feasible region.
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Mystery of the WA-TY Method

> The excellent numerical performance of the WA-TY method has attracted some
research interests — Ahipasaoglu, Sun and Todd (2008) showed local linear
convergence of this method, but the global linear convergence remains open.

> The authors pointed out two structural difficulties of (D-OPT): i) f is not
L-smooth on A,, and ii) f is degenerate on the feasible region.

> This difficulty prevents the recent analyses of the away-step FW (AFW)
methods for L-smooth functions [LJJ15; BS17; PR19], as well as for
non-degenerate generalized self-concordant function [Dvu+23] being applied
to (D-OPT).
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Mystery of the WA-TY Method

> The excellent numerical performance of the WA-TY method has attracted some
research interests — Ahipasaoglu, Sun and Todd (2008) showed local linear
convergence of this method, but the global linear convergence remains open.

> The authors pointed out two structural difficulties of (D-OPT): i) f is not
L-smooth on A,, and ii) f is degenerate on the feasible region.

> This difficulty prevents the recent analyses of the away-step FW (AFW)
methods for L-smooth functions [LJJ15; BS17; PR19], as well as for
non-degenerate generalized self-concordant function [Dvu+23] being applied
to (D-OPT).

> Some deeper questions:

® What is the essential structure of (D-0PT) that drives the linear convergence of
the WA-TY method (or the AFW method)?

® Can it help us develop and analyze a new type of AFW methods for an
“unconventional” class of problems?
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Mystery of the WA-TY Method

> The excellent numerical performance of the WA-TY method has attracted some
research interests — Ahipasaoglu, Sun and Todd (2008) showed local linear
convergence of this method, but the global linear convergence remains open.

> The authors pointed out two structural difficulties of (D-OPT): i) f is not
L-smooth on A,, and ii) f is degenerate on the feasible region.

> This difficulty prevents the recent analyses of the away-step FW (AFW)
methods for L-smooth functions [LJJ15; BS17; PR19], as well as for
non-degenerate generalized self-concordant function [Dvu+23] being applied
to (D-OPT).

> Some deeper questions:

® What is the essential structure of (D-0PT) that drives the linear convergence of
the WA-TY method (or the AFW method)?

® Can it help us develop and analyze a new type of AFW methods for an
“unconventional” class of problems?

> In this work, we will provide affirmative answers to the questions above.
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Problem of Interest

F* :=mingex [F(z) := f(Az) + (¢, 7)) (P)
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> X and Y are finite-dimensional vector spaces
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Problem of Interest

F* :=mingex [F(z) := f(Az) + (¢, 7)) ™

> X and Y are finite-dimensional vector spaces

> X C X is a polytope such that X = conv(}V), where V is a finite set of atoms
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> X and Y are finite-dimensional vector spaces
> X C X is a polytope such that X = conv(}V), where V is a finite set of atoms

> f:Y — RU{+oo} is a #-log-homogeneous self-concordant barrier (-LHSCB)
for some regular cone K CY
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Problem of Interest

F* :=mingex [F(z) := f(Az) + (¢, 7)) (P

> X and Y are finite-dimensional vector spaces

> X C X is a polytope such that X = conv(}V), where V is a finite set of atoms

\

f:Y - RU {400} is a §-log-homogeneous self-concordant barrier (f-LHSCB)
for some regular cone K CY

> A:X — Y is a linear operator such that A(X) C K and A(X) NintkC # 0
> (c,-) : X — R is a linear function

> Besides D-optimal design, other applications include
® Budget-constrained D-optimal design
® Positron emission tomography

® (Reformulated) Poisson image deblurring with TV-regularization
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Away-step Frank-Wolfe Method for solving (P)

» Input: 2° ¢ XY Ndom F, 8° € Ay such that z0 = Zvev Bov, So := supp(3°).
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Away-step Frank-Wolfe Method for solving (P)

» Input: 2° ¢ XY Ndom F, 8° € Ay such that z0 = Zvev Bov, So := supp(3°).
» At iteration k& > 0:
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Away-step Frank-Wolfe Method for solving (P)

» Input: 2° ¢ XY Ndom F, 8° € Ay such that z0 = Zvev Bov, So := supp(3°).
» At iteration k& > 0:

> (FW direction) Compute v* € argmin, ., (VF(z*),2), df == v
Gy := (—VF(z*),dk). If Gy, = 0, then STOP.

k _ 2% and
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Away-step Frank-Wolfe Method for solving (P)

» Input: 2° ¢ XY Ndom F, 8° € Ay such that z0 = Zvev Bov, So := supp(3°).
» At iteration k& > 0:

> (FW direction) Compute v* € argmin, ., (VF(z*),2), df == v
Gy := (—VF(z*),dk). If Gy, = 0, then STOP.

k _ 2% and

> (Away direction) If |Sy| > 1, compute a* € argmax, s, (VF(z*),z),
dk = 2" —a* and Gy := (—~VF(2"),d}).
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Away-step Frank-Wolfe Method for solving (P)

» Input: 2° ¢ XY Ndom F, 8° € Ay such that z0 = Zvev Bov, So := supp(3°).
» At iteration k& > 0:

> (FW direction) Compute v* € argmin, ., (VF(z*),2), df == v
Gy := (—VF(z*),dk). If Gy, = 0, then STOP.

k _ 2% and

> (Away direction) If |Sy| > 1, compute a* € argmax, s, (VF(z*),z),
dk = 2" —a* and Gy := (—~VF(2"),d}).

> (Choose direction) If |Sk| = 1 or Gy, > Gy, let d* := d¥ and a;, := 1;
otherwise, let d¥ := d% and ay := 55k/(1 — ﬂsk)
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Away-step Frank-Wolfe Method for solving (P)

» Input: 2° ¢ XY Ndom F, 8° € Ay such that z0 = ZUEV Bov, So := supp(3°).
» At iteration k& > 0:

> (FW direction) Compute v* € argmin, ., (VF(z*),2), df == v
Gy := (—VF(z*),dk). If Gy, = 0, then STOP.

k _ 2% and

> (Away direction) If |Sy| > 1, compute a* € argmax, s, (VF(z*),z),
dk = 2" —a* and Gy := (—~VF(2"),d}).

> (Choose direction) If |Sk| = 1 or Gy, > Gy, let d* := d¥ and a;, := 1;
otherwise, let d* := dj and ay := 8% /(1 — B%,).

> (Choose stepsize) Choose oy € (0, @] in one of the following two ways:
® Adaptive stepsize: Compute ry, := —(VF(z*),d*) and Dy, := ||Adk||yk- If
Dy, =0, then ay, := ay; otherwise, ay := min{bg, &y}, where
b := 715/ (Dy(ri + Dk))-
® Exact line-search: «j € argmin

ay €(0,ak] F(z* + ad).
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Away-step Frank-Wolfe Method for solving (P)

» Input: 2° ¢ XY Ndom F, 8° € Ay such that z0 = ZUEV Bov, So := supp(3°).
» At iteration k& > 0:

> (FW direction) Compute v* € argmin, ., (VF(z*),2), df == v
Gy := (—VF(z*),dk). If Gy, = 0, then STOP.

k _ 2% and

> (Away direction) If |Sy| > 1, compute a* € argmax, s, (VF(z*),z),
dk = 2" —a* and Gy := (—~VF(2"),d}).

> (Choose direction) If |Sk| = 1 or Gy, > Gy, let d* := d¥ and a;, := 1;
otherwise, let d* := dj and ay := 8% /(1 — B%,).

> (Choose stepsize) Choose oy € (0, @] in one of the following two ways:

® Adaptive stepsize: Compute ry, := —(VF(z*),d*) and Dy, := ||Adk||yk- If
Dy, =0, then ay, := ay; otherwise, ay := min{bg, &y}, where
b := 715/ (Dy(ri + Dk))-

® Exact line-search: oy € argming, ¢(0,a,] F(zF + ad®).

> (Update iterates) Update ="t := 2* + axd” and g**! € A}y such that

P = 3 85, and let Seps == supp(8FH).
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Some Remarks

Denote dim X = n.
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Some Remarks

Denote dim X = n.

> Depending on X, we may prefer to solve mingey (VF(z"), x) either by either
minimizing over X (e.g., X =[] [a:,bi]) or V (e.g., X = A,).
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Some Remarks

Denote dim X = n.
> Depending on X, we may prefer to solve mingey (VF(z"), x) either by either
minimizing over X (e.g., X =[] [a:,bi]) or V (e.g., X = A,).
> The FW-gap Gy = (VF(z*), 2" — v*) provides an effective stopping criterion:
Gr > [0k := F(z*) = F*] fork>0.
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Some Remarks

Denote dim X = n.

> Depending on X, we may prefer to solve mingey (VF(z"), x) either by either
minimizing over X (e.g., X = [[I",[a:,bi]) or V (e.g., X = Ayp).

> The FW-gap Gy = (VF(z"), 2" — v*) provides an effective stopping criterion:
G > [5k _F( ) F*] for kK > 0.

> If |V| = w(n), we may prefer to maintain a compact representation of Sy such
that |Sx| = O(n) for k > 0, at computational cost of O(n?) per iteration [BS17].
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Some Remarks

Denote dim X = n.

>

Depending on X, we may prefer to solve mingcy (VEF(z"),z) either by either
minimizing over X (e.g., X = [[I",[a:,bi]) or V (e.g., X = Ayp).

The FW-gap Gy = (VF(z"), 2" — v*) provides an effective stopping criterion:
G > [5k _F( ) F*] for kK > 0.

> If |V| = w(n), we may prefer to maintain a compact representation of Sy such

that |Sx| = O(n) for k > 0, at computational cost of O(n?) per iteration [BS17].
For all applications of interest, computing Dy = ||Ad*|| . = (V2F(z*)d*, d*)'/?

Ily
takes O(n) times, instead of O(n?) time.
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Computational Guarantees

F* = mingezn [F(2) := f(Az) + (¢, )]
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Computational Guarantees
F* := mingern [F(z) := f(Az) + (¢, z)]

> Define B := max, ,/cx {¢,x — z') (the variation of (c,-) on X).
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> Define ¥ := A(X) and Ry (y") := sup,eacx) |y — y"lly= < +oo.
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> Define ¢ := min{|W|: W CV such that conv/V Ndom F # (}.
> Define ¥ := A(X) and Ry (y") := sup,eacx) |y — y"lly= < +oo.

Global linear convergence of {Jx }r>0:
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> Define ¥ := A(X) and Ry (y") := sup,eacx) |y — y"lly= < +oo.

Global linear convergence of {Jx }r>0:

> {0k }r>0 is strictly decreasing (until termination).
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Computational Guarantees
F* := mingern [F(z) := f(Az) + (¢, z)]

> Define B := max, ,/cx {¢,x — z') (the variation of (c,-) on X).
> Define ¢ := min{|W|: W CV such that conv/V Ndom F # (}.
> Define ¥ := A(X) and Ry (y") := sup,eacx) |y — y"lly= < +oo.

Global linear convergence of {Jx }r>0:

> {0k }r>0 is strictly decreasing (until termination).
> For all k > 0, define ke := [max{(k — |So| + ¢)/2,0}] =~ k/2, and then

1 ud (X, X*)?
5.3(60 + 60 + B)" 42.4(6 + B)2 |’

o < (1—p)*a8y, where p:= min{

where
® 4 is the quadratic-growth constant of f on ) that only depends on Ry (y*)
® O(X,X") > 0 is a geometric constant about X* and X.
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Computational Guarantees
F* := mingern [F(z) := f(Az) + (¢, z)]

> Define B := max, ,/cx {¢,x — z') (the variation of (c,-) on X).
> Define ¢ := min{|W|: W CV such that conv/V Ndom F # (}.
> Define ¥ := A(X) and Ry (y") := sup,eacx) |y — y"lly= < +oo.

Global linear convergence of {Jx }r>0:

> {0k }r>0 is strictly decreasing (until termination).
> For all k > 0, define ke := [max{(k — |So| + ¢)/2,0}] =~ k/2, and then

1 ud (X, X*)?
5.3(60 + 60 + B)" 42.4(6 + B)2 |’

o < (1—p)*a8y, where p:= min{

where
® 4 is the quadratic-growth constant of f on ) that only depends on Ry (y*)
® O(X,X") > 0 is a geometric constant about X* and X.

> All the quantities defining p are affine-invariant and norm-independent.
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Computational Guarantees

Global linear convergence of {Gy}r>o:

For some (affine-invariant) D < 400 and all k > 0, we have
4(1 = p)kesomax{D,1},  if 6 > 1
< ~ .
4/1 = pkeﬁ\/%max{D, 1}, ifds <1

Essentially, this means {Gj}r>0 converges at the linear rate /1 — p, which is worse
than the rate of {0k }r>0, namely (1 — p).
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Computational Guarantees

Global linear convergence of {Gy}r>o:

For some (affine-invariant) D < 400 and all k > 0, we have
4(1 — p)keft 5o max{D, 1}, if 0, > 1
4yT =P " /Somax{D,1}, ifdp <1

Essentially, this means {Gj}r>0 converges at the linear rate /1 — p, which is worse
than the rate of {0k }r>0, namely (1 — p).
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Improved local linear rate

> Let X # () denote the set of optimal solutions of (P)
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Improved local linear rate

> Let X # () denote the set of optimal solutions of (P)

> There exists a face of X, denoted by F, such that for any z* € X", if x € X,
then
(VE(z"),z —2")=0 <= =zelF.
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Improved local linear rate

> Let X # () denote the set of optimal solutions of (P)
> There exists a face of X, denoted by F, such that for any z* € X*, if x € X,

then
(VE(z"),z —2")=0 <= =zelF.

> Define Ar := maxy+cx» min,ey\ 7 (VF(z"),v — ™) > 0.
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Improved local linear rate

> Let X # () denote the set of optimal solutions of (P)

> There exists a face of X, denoted by F, such that for any z* € X", if x € X,
then
(VE(z"),z —2")=0 <= =zelF.

> Define Ar := maxy+cx» min,ey\ 7 (VF(z"),v — ™) > 0.

Land on F in finite iterations:

Let k > 0 satisfy that
67@ < min{V(Af7 Ry(y*))vmiHUEV\}'F(U) - F*}
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Improved local linear rate

> Let X # () denote the set of optimal solutions of (P)

> There exists a face of X, denoted by F, such that for any z* € X", if x € X,
then
(VE(z"),z —2")=0 <= =zelF.

> Define Ar := maxy+cx» min,ey\ 7 (VF(z"),v — ™) > 0.

Land on F in finite iterations:

Let k > 0 satisfy that
0z < min{V(Ar, Ry(y")), minyey\ #F(v) — F*}.
For all k > k, if 2 ¢ F, then
> Sk+1 € Sk, when either exact line-search or adaptive stepsize is used in Step 26,

> Skt1 = Sk \ {a*} for some a* € S, N Vz, when exact line-search is used in
Step 26;

otherwise, if ¥ € F, then z' € F for all | > k.
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Another Example: Positron Emission Tomography

maXzea,, {F(x) = Z;n=1 pj ln(a;x)} (PET)
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Another Example: Positron Emission Tomography

maXzea,, {F(x) = Z;n=1 pj ln(a;x)} (PET)

> Known as Positron Emission Tomography (PET) in medical imaging, but has
many other applications, e.g., inference of multi-dimensional Hawkes
processes [Z2ZS13] and log-optimal investment [Cov84].
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Another Example: Positron Emission Tomography

maXzea,, {F(x) = Z;n=1 pj ln(a;x)} (PET)

> Known as Positron Emission Tomography (PET) in medical imaging, but has
many other applications, e.g., inference of multi-dimensional Hawkes
processes [Z2ZS13] and log-optimal investment [Cov84].

> For all j € [m], let p; >0, a; € R}, a; # 0 and Z;nzlpj =1
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Another Example: Positron Emission Tomography

max,en, {F(x) = Z;"zl Dj ln(a;x)} (PET)

> Known as Positron Emission Tomography (PET) in medical imaging, but has
many other applications, e.g., inference of multi-dimensional Hawkes
processes [27S13] and log-optimal investment [Cov84].

> For all j € [m], let p; >0, a; € R}, a; # 0 and Z;"lej =1
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Thank you!
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