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Problem of Interest

F ∗ := minx∈Rn [F (x) := f(Ax) + h(x)] (P)

B A : Rn → Rm is a linear operator (not necessarily invertible)

B f : Rm → R ∪ {+∞} is a θ-log-homogeneous self-concordant barrier
(θ-LHSCB) for some regular cone K ⊆ Rm

B h : Rn → R ∪ {+∞} is a closed and convex function, with compact
domain X := domh

B Assume domF 6= ∅, so at least one minimizer x∗ ∈ domF exists, and
define F ∗ := F (x∗)

B Includes many applications (coming up later).
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θ-LHSCB (logarithmically-homogeneous self-concordant barrier)

B Let K $ Rm be a regular cone, i.e., K is closed, convex, pointed and has
nonempty interior.

B f is a θ-LHSCB on K with complexity parameter θ ≥ 1 if f is three-times
differentiable and strictly convex on intK, and satisfies

1
∣∣D3f(u)[w,w,w]

∣∣ ≤ 2‖w‖3u ∀u ∈ intK, ∀w ∈ Rm,
2 f(uk)→∞ for any {uk}k≥1 ⊆ intK such that uk → u ∈ bdK,
3 f(tu) = f(u)− θ ln(t) ∀u ∈ intK, ∀ t > 0.

where ‖w‖u := 〈∇2f(u)w,w〉1/2 denotes the local norm of w at u ∈ intK.

B Two prototypical examples:
• f(U) = − ln det(U) for U ∈ K := Sk+ and θ = k,
• f(u) = −

∑m

j=1 wj ln(uj) for u ∈ K := Rm+ and θ =
∑m

j=1 wj where
w1, . . . , wn ≥ 1.
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A Motivating Example: D-optimal Design

minp − ln det(
∑m

i=1piaia
>
i )

s. t.
∑m

i=1 pi = 1, pi ≥ 0, ∀ i ∈ [m]. (D-OPT)

B Problem data: {ai}mi=1 ⊆ Rn whose linear span is Rn.

B Arises in many places, including optimal experimental design, and as the dual
problem of the minimum volume enclosing ellipsoid problem.

B Khachiyan (1996) proposed a “barycentric coordinate ascent” method with
exact line-search, which is actually FW with exact line-search. Method works
remarkably well both in theory and practice: it computes an ε-optimal solution
of (D-OPT) in (essentially) O(n2/ε) iterations.
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i )
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∑m

i=1 pi = 1, pi ≥ 0, ∀ i ∈ [m]. (D-OPT)

B The success of this method has been a mysterious outlier for more than 20
years, since the objective function in (D-OPT) does not have Lipschitz gradient
on the feasible region, which is a critical assumption for traditional Frank-Wolfe.

B What problem structure actually drives the success of Khachiyan’s method?
And might such structure exist anywhere else?

B We resolve this mystery and generalize his method to the much broader class of
problems in (P), even while relaxing the exact line-search requirement.
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Poisson Image Deblurring with TV Regularization

True image X Noisy image Y

B Let an m× n matrix X denote the true representation of an image, such
that 0 ≤ Xij ≤M denotes the pixel level at location (i, j).

B Let A : Rm×n → Rm×n denote the 2D discrete convolutional (linear)
operator, which is assumed to be known.

B The observed image Y is obtained by first passing X through A, and then
subject to additive independent (entry-wise) Poisson noise.

B For convenience, we also represent A in its matrix form A ∈ RN×N , where
N := mn, and vectorize Y and X into y ∈ RN and x ∈ RN , respectively.
Notation: we write x = vec(X) and X = mat(x), etc.
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Poisson Image Deblurring with TV Regularization

B We seek to recover X from Y (equivalently x from y) using
maximum-likelihood estimation on the TV-regularized problem:

minx∈RN F̄ (x) := −
∑N

l=1 yl ln(a>l x) + (
∑N

l=1 al)>x+ λTV(x)
s. t. 0 ≤ x ≤Me (Deblur)

B (Deblur) has a (standard) total-variation (TV) regularization term to
recover a smooth image with sharp edges. The TV term is given by

TV(x) :=
∑m

i=1
∑n−1

j=1 |[mat(x)]i,j − [mat(x)]i,j+1|

+
∑m−1

i=1
∑n

j=1 |[mat(x)]i,j − [mat(x)]i+1,j | .
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Some Other Applications

B Analyzing social networks (learning of Multivariate Hawkes processes)

B Medical imaging reconstruction (Positron emission tomography)

B Quantum physics (quantum state tomography)

B Computational geometry (computing the analytic center of a polytope)
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A Simple Illustration When h = ιP
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New Generalized Frank-Wolfe Method (gFW-LHSCB)

F ∗ := minx∈Rn [F (x) := f(Ax) + h(x)] (P)

I Initialize: x0 ∈ domF , k := 0
I Repeat (until some convergence criterion is met)

vk ∈ arg minx∈Rn〈∇f(Axk),Ax〉+ h(x) (Solve Lin. subproblem)

Gk := 〈∇f(Axk),A(xk − vk)〉+ h(xk)− h(vk) (FW-Gap)
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Remarks on gFW-LHSCB

B For most applications (including all of the applications mentioned
previously), Dk in (Local Distance) can be computed in O(n) time.

B The FW-gap Gk provides an effective stopping criterion:
Gk ≥ [δk := F (xk)− F ∗], for all k ≥ 0.

B The step-size rule in (Stepsize) is derived from the “curvature property”
of a (standard strongly non-degenerate) self-concordant function:

f(xk + α(vk − xk)) ≤ f(xk)− αGk + ω(αDk), (Curvature)

where ω(t) := −t− ln(1− t) for t < 1.

B For some applications (e.g., PET and D-optimal design), the step-size can
also be efficiently computed via exact line-search.
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Computational Guarantees

Define Rh := maxx,y∈dom h |h(x)− h(y)| (the variation of h on its domain)

Recall that δ0 is the initial optimality gap

Theorem:

B (Iteration complexity for ε-optimality gap) Let Kε denote the number of
iterations required by gFW-LHSCB to obtain δk ≤ ε. Then:

Kε ≤ d5.3(δ0 + θ +Rh) ln(10.6δ0)e+
⌈

12(θ +Rh)2 max
{

1
ε
− 1
δ0

, 0
}⌉

.

B (Iteration complexity for ε-FW gap) Let FWGAPε denote the number of
iterations required by gFW-LHSCB to obtain Gk ≤ ε. Then:

FWGAPε ≤ d5.3(δ0 + θ +Rh) ln(10.6δ0)e+
⌈

24(θ +Rh)2

ε

⌉
.

Renbo Zhao (UIowa) FW Methods for LHSCB 15 / 34



Computational Guarantees

Define Rh := maxx,y∈dom h |h(x)− h(y)| (the variation of h on its domain)

Recall that δ0 is the initial optimality gap

Theorem:

B (Iteration complexity for ε-optimality gap) Let Kε denote the number of
iterations required by gFW-LHSCB to obtain δk ≤ ε. Then:

Kε ≤ d5.3(δ0 + θ +Rh) ln(10.6δ0)e+
⌈

12(θ +Rh)2 max
{

1
ε
− 1
δ0

, 0
}⌉

.

B (Iteration complexity for ε-FW gap) Let FWGAPε denote the number of
iterations required by gFW-LHSCB to obtain Gk ≤ ε. Then:

FWGAPε ≤ d5.3(δ0 + θ +Rh) ln(10.6δ0)e+
⌈

24(θ +Rh)2

ε

⌉
.

Renbo Zhao (UIowa) FW Methods for LHSCB 15 / 34



Computational Guarantees

Define Rh := maxx,y∈dom h |h(x)− h(y)| (the variation of h on its domain)

Recall that δ0 is the initial optimality gap

Theorem:

B (Iteration complexity for ε-optimality gap) Let Kε denote the number of
iterations required by gFW-LHSCB to obtain δk ≤ ε. Then:

Kε ≤ d5.3(δ0 + θ +Rh) ln(10.6δ0)e+
⌈

12(θ +Rh)2 max
{

1
ε
− 1
δ0

, 0
}⌉

.

B (Iteration complexity for ε-FW gap) Let FWGAPε denote the number of
iterations required by gFW-LHSCB to obtain Gk ≤ ε. Then:

FWGAPε ≤ d5.3(δ0 + θ +Rh) ln(10.6δ0)e+
⌈

24(θ +Rh)2

ε

⌉
.

Renbo Zhao (UIowa) FW Methods for LHSCB 15 / 34



Remarks on the Computational Guarantees

Our computational guarantees only depend on three (natural) quantities:

B the initial optimality gap δ0,
B the complexity parameter θ of the barrier f ,
B the variation of h on its domain domh (= 0 if h = ιX ).

For many applications, all of the three quantities can be easily estimated, and
hence the computational guarantees are known before running the algorithm.
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Computational Experiments on Poisson Image
Deblurring with TV Regularization

minx∈RN F̄ (x) := −
∑N

l=1 yl ln(a>l x)︸ ︷︷ ︸
=f(Ax)

+ 〈
∑N

l=1 al, x〉+ λTV(x)︸ ︷︷ ︸
=h(x)

s. t. 0 ≤ x ≤Me ,

(Deblur)

B Since TV(·) is polyhedral, and the linear-optimization sub-problem

vk ∈ arg min0≤x≤Me〈∇f(Axk),Ax〉+ 〈
∑N

l=1 al, x〉+ λTV(x)

can be formulated as a relatively simple LP and solved easily using a
standard LP solver such as Gurobi.
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Implementation Details/Issues

B We evaluate the numerical performance of our FW method gFW-LHSCB
(with adaptive stepsize) which we call FW-Adapt.

B It turns out that an exact line-search step-size for gFW-LHSCB can be
computed for this particular problem, which we call FW-Exact.

B We tested FW-Adapt and FW-Exact on the Shepp-Logan phantom image
of size 100× 100 (hence N = 10, 000).

B We chose the starting point x0 = vec(Y ) (the vectorized noisy image),
and we set λ = 0.01.

B We used CVXPY to (approximately) compute the optimal objective value
F̄ ∗ of (Deblur) in order to compute optimality gaps.
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Results: Recovered Images

(k) True image X (l) Noisy image Y (m) FW-Adapt (n) FW-Exact

Figure 1: True, noisy and recovered Shepp-Logan phantom images.
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Results: Optimality Gaps versus Time and Iterations

(a) Optimality gap versus time (in seconds) (b) Optimality gap versus iterations

Figure 2: Comparison of optimality gaps of FW-Adapt (FW-A) and FW-Exact (FW-E)
for image recovery of the Shepp-Logan phantom image.
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Motivating Example: D-Optimal Design

min f(x) := − ln det
(∑m

i=1xiaia
>
i

)
s. t. x ∈ ∆m := {

∑m

i=1 xi = 1, xi ≥ 0, ∀ i ∈ [m]}.
(D-OPT)

B Problem data: m points {ai}mi=1 that span Rn.

B In statistics, (D-OPT) is the continuous relaxation of the (discrete) D-optimal
experimental design problem; in computational geometry, it is the dual problem
of the minimum volume enclosing ellipsoid (MVEE) problem.

B Despite its seemingly simple structure, (D-OPT) is not quite amenable to
(traditional) first-order methods (since f blows up on part of ∂∆m, and has no
L-smoothness property on ∆m).

B Atwood (1973) proposed the following algorithm for solving (D-OPT):
ik ∈ arg mini∈[m]∇if(xk), Gk := −∇ikf(xk)− n,

jk ∈ arg maxj:xk
j
>0∇if(xk), G̃k := ∇jkf(xk) + n,

dk =
{
eik − x

k if Gk > G̃k

xk − ejk otherwise
, xk+1 := xk + αkd

k,

where the stepsize αk ≥ 0 is given by exact line-search.
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The WA-TY Method

B Structurally, this method coincides with the Frank-Wolfe method with Wolfe’s
away-step (1970), and it was rediscovered by Todd and Yıldırım (2005) —
therefore, it is referred to as the WA-TY method.

B Excellent numerical performance:

ASFW-A & ASFW-E (this work): Away-step FW methods for LHB
FW-A & FW-E [Fed72; Kha96; ZFce]: Generalized FW methods for LHB
RSGM-F & RSGM-LS [BBT17; LFN18]: Relatively smooth gradient method
MG [STT78]: Multiplicative gradient method
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Mystery of the WA-TY Method

B The excellent numerical performance of the WA-TY method has attracted some
research interests — Ahipasaoglu, Sun and Todd (2008) showed local linear
convergence of this method, but the global linear convergence remains open.

B The authors pointed out two structural difficulties of (D-OPT): i) f is not
L-smooth on ∆m and ii) f is degenerate on the feasible region.

B This difficulty prevents the recent analyses of the away-step FW (AFW)
methods for L-smooth functions [LJJ15; BS17; PR19], as well as for
non-degenerate generalized self-concordant function [Dvu+23] being applied
to (D-OPT).

B Some deeper questions:
• What is the essential structure of (D-OPT) that drives the linear convergence of

the WA-TY method (or the AFW method)?
• Can it help us develop and analyze a new type of AFW methods for an

“unconventional” class of problems?

B In this work, we will provide affirmative answers to the questions above.
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Problem of Interest

F ∗ := minx∈X [F (x) := f(Ax) + 〈c, x〉] (P)

B X and Y are finite-dimensional vector spaces

B X ⊆ X is a polytope such that X = conv(V), where V is a finite set of atoms

B f : Y→ R ∪ {+∞} is a θ-log-homogeneous self-concordant barrier (θ-LHSCB)
for some regular cone K ⊆ Y

B A : X→ Y is a linear operator such that A(X ) ⊆ K and A(X ) ∩ intK 6= ∅

B 〈c, ·〉 : X→ R is a linear function

B Besides D-optimal design, other applications include
• Budget-constrained D-optimal design
• Positron emission tomography
• (Reformulated) Poisson image deblurring with TV-regularization
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Away-step Frank-Wolfe Method for solving (P)

I Input: x0 ∈ X ∩ domF , β0 ∈ ∆|V| such that x0 =
∑

v∈V β
0
vv, S0 := supp(β0).

I At iteration k ≥ 0:
. (FW direction) Compute vk ∈ arg minx∈V 〈∇F (xk), x〉, dkF := vk − xk and
Gk := 〈−∇F (xk), dkF〉. If Gk = 0, then STOP.

. (Away direction) If |Sk| > 1, compute ak ∈ arg maxx∈Sk
〈∇F (xk), x〉,

dkA := xk − ak and G̃k := 〈−∇F (xk), dkA〉.

. (Choose direction) If |Sk| = 1 or Gk > G̃k, let dk := dkF and ᾱk := 1;
otherwise, let dk := dkA and ᾱk := βkak/(1− βkak ).

. (Choose stepsize) Choose αk ∈ (0, ᾱk] in one of the following two ways:
• Adaptive stepsize: Compute rk := −〈∇F (xk), dk〉 and Dk := ‖Adk‖yk . If
Dk = 0, then αk := ᾱk; otherwise, αk := min{bk, ᾱk}, where
bk := rk/(Dk(rk +Dk)).

• Exact line-search: αk ∈ arg minαk∈(0,ᾱk] F (xk + αdk).

. (Update iterates) Update xk+1 := xk + αkd
k and βk+1 ∈ ∆|V| such that

xk+1 =
∑

v∈V β
k+1
v v, and let Sk+1 := supp(βk+1).
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. (Choose stepsize) Choose αk ∈ (0, ᾱk] in one of the following two ways:
• Adaptive stepsize: Compute rk := −〈∇F (xk), dk〉 and Dk := ‖Adk‖yk . If
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. (Choose stepsize) Choose αk ∈ (0, ᾱk] in one of the following two ways:
• Adaptive stepsize: Compute rk := −〈∇F (xk), dk〉 and Dk := ‖Adk‖yk . If
Dk = 0, then αk := ᾱk; otherwise, αk := min{bk, ᾱk}, where
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. (Choose stepsize) Choose αk ∈ (0, ᾱk] in one of the following two ways:
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. (Choose direction) If |Sk| = 1 or Gk > G̃k, let dk := dkF and ᾱk := 1;
otherwise, let dk := dkA and ᾱk := βkak/(1− βkak ).

. (Choose stepsize) Choose αk ∈ (0, ᾱk] in one of the following two ways:
• Adaptive stepsize: Compute rk := −〈∇F (xk), dk〉 and Dk := ‖Adk‖yk . If
Dk = 0, then αk := ᾱk; otherwise, αk := min{bk, ᾱk}, where
bk := rk/(Dk(rk +Dk)).

• Exact line-search: αk ∈ arg minαk∈(0,ᾱk] F (xk + αdk).

. (Update iterates) Update xk+1 := xk + αkd
k and βk+1 ∈ ∆|V| such that

xk+1 =
∑

v∈V β
k+1
v v, and let Sk+1 := supp(βk+1).
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. (Choose stepsize) Choose αk ∈ (0, ᾱk] in one of the following two ways:
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Some Remarks

Denote dimX = n.

B Depending on X , we may prefer to solve minx∈V 〈∇F (xk), x〉 either by either
minimizing over X (e.g., X =

∏n

i=1[ai, bi]) or V (e.g., X = ∆n).

B The FW-gap Gk = 〈∇F (xk), xk − vk〉 provides an effective stopping criterion:
Gk ≥ [δk := F (xk)− F ∗] for k ≥ 0.

B If |V| = ω(n), we may prefer to maintain a compact representation of Sk such
that |Sk| = O(n) for k ≥ 0, at computational cost of O(n2) per iteration [BS17].

B For all applications of interest, computing Dk = ‖Adk‖yk = 〈∇2F (xk)dk, dk〉1/2
takes O(n) times, instead of O(n2) time.
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Computational Guarantees

F ∗ := minx∈Rn [F (x) := f(Ax) + 〈c, x〉]

B Define B := maxx,x′∈X 〈c, x− x′〉 (the variation of 〈c, ·〉 on X ).

B Define q := min{|W| : W ⊆ V such that convW ∩ domF 6= ∅}.

B Define Y := A(X ) and RY(y∗) := supy∈A(X ) ‖y − y∗‖y∗ < +∞.

Global linear convergence of {δk}k≥0:

B {δk}k≥0 is strictly decreasing (until termination).

B For all k ≥ 0, define keff := dmax{(k − |S0|+ q)/2, 0}e ≈ k/2, and then

δk ≤ (1− ρ)keff δ0, where ρ := min
{

1
5.3(δ0 + θ +B) ,

µΦ(X ,X ∗)2

42.4(θ +B)2

}
,

where
• µ is the quadratic-growth constant of f on Y that only depends on RY(y∗)
• Φ(X ,X ∗) > 0 is a geometric constant about X ∗ and X .

B All the quantities defining ρ are affine-invariant and norm-independent.
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Computational Guarantees
Global linear convergence of {Gk}k≥0:

For some (affine-invariant) D̄ < +∞ and all k ≥ 0, we have

Gk ≤

{
4(1− ρ)keff δ0 max{D̄, 1}, if δk > 1

4
√

1− ρkeff
√
δ0 max{D̄, 1}, if δk ≤ 1

.

Essentially, this means {Gk}k≥0 converges at the linear rate
√

1− ρ, which is worse
than the rate of {δk}k≥0, namely (1− ρ).
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Improved local linear rate

B Let X ∗ 6= ∅ denote the set of optimal solutions of (P)

B There exists a face of X , denoted by F , such that for any x∗ ∈ X ∗, if x ∈ X ,
then

〈∇F (x∗), x− x∗〉 = 0 ⇐⇒ x ∈ F .

B Define ∆F := maxx∗∈X∗ minv∈V\F 〈∇F (x∗), v − x∗〉 > 0.

Land on F in finite iterations:

Let k̄ ≥ 0 satisfy that
δk̄ < min{V (∆F , RY(y∗)),minv∈V\FF (v)− F ∗}.

For all k ≥ k̄, if xk 6∈ F , then
B Sk+1 ⊆ Sk, when either exact line-search or adaptive stepsize is used in Step 26,
B Sk+1 = Sk \ {ak} for some ak ∈ Sk ∩ V̄F , when exact line-search is used in

Step 26;
otherwise, if xk ∈ F , then xl ∈ F for all l ≥ k.
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Another Example: Positron Emission Tomography

maxx∈∆n

{
F (x) :=

∑m

j=1 pj ln(a>j x)
}

(PET)

B Known as Positron Emission Tomography (PET) in medical imaging, but has
many other applications, e.g., inference of multi-dimensional Hawkes
processes [ZZS13] and log-optimal investment [Cov84].

B For all j ∈ [m], let pj > 0, aj ∈ Rn+, aj 6= 0 and
∑m

j=1 pj = 1.
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many other applications, e.g., inference of multi-dimensional Hawkes
processes [ZZS13] and log-optimal investment [Cov84].

B For all j ∈ [m], let pj > 0, aj ∈ Rn+, aj 6= 0 and
∑m

j=1 pj = 1.
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Thank you!
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[BBT17] Heinz H. Bauschke, Jérôme Bolte, and Marc Teboulle. “A Descent Lemma Beyond
Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications”. In:
Math. Oper. Res. 42.2 (2017), pp. 330–348.

[BS17] A. Beck and S. Shtern. “Linearly convergent away-step conditional gradient for
non-strongly convex functions”. In: Math. Program. 164 (2017), 1–27.

[Cov84] T. Cover. “An algorithm for maximizing expected log investment return”. In: IEEE
Trans. Inf. Theory 30.2 (1984), pp. 369–373.

[Dvu+23] P. Dvurechensky et al. “Generalized self-concordant analysis of Frank–Wolfe
algorithms”. In: Math. Program. 198 (2023), 255––323.

[Fed72] V. V. Fedorov. Theory of Optimal Experiments. Academic Press, 1972.

[Kha96] Leonid G. Khachiyan. “Rounding of Polytopes in the Real Number Model of
Computation”. In: Math. Oper. Res. 21.2 (1996), pp. 307–320.

[LFN18] Haihao. Lu, Robert M. Freund, and Yurii. Nesterov. “Relatively Smooth Convex
Optimization by First-Order Methods, and Applications”. In: SIAM J. Optim. 28.1
(2018), pp. 333–354.

[LJJ15] Simon Lacoste-Julien and Martin Jaggi. “On the Global Linear Convergence of
Frank-Wolfe Optimization Variants”. In: Proc. NeurIPS. Montreal, Canada, 2015,
496––504.

[PR19] Javier Peña and Daniel Rodŕıguez. “Polytope Conditioning and Linear Convergence
of the Frank–Wolfe Algorithm”. In: Math. Oper. Res. 44.1 (2019), pp. 1–18.

[STT78] S.D. Silvey, D.H. Titterington, and B. Torsney. “An algorithm for optimal designs on
a design space”. In: Commun. Stat. Theory Methods 7.14 (1978), pp. 1379–1389.

Renbo Zhao (UIowa) FW Methods for LHSCB 33 / 34



References

[ZFce] Renbo Zhao and Robert M. Freund. “Analysis of the Frank-Wolfe Method for
Convex Composite Optimization involving a Logarithmically-Homogeneous Barrier”.
In: Math. Program. (accepted, 2022).

[ZZS13] Ke Zhou, Hongyuan Zha, and Le Song. “Learning Social Infectivity in Sparse
Low-rank Networks Using Multi-dimensional Hawkes Processes”. In: Proc.
AISTATS. 2013, pp. 641–649.

Renbo Zhao (UIowa) FW Methods for LHSCB 34 / 34


	Introduction
	Applications
	Our Method: New Generalized Frank-Wolfe Method
	Computational Experiments

